Superuniversality and non-abelian bosonization in 2+1 dimensions

Michael Mulligan
UC Riverside
Institute for CM Theory UIUC
in collusion with:
Aaron Hui and Eun-Ah Kim
phase transitions between quantum Hall states represent some of the best examples of disordered quantum critical phenomena

Engel, Wei, Tsui, \& Shayegan
a puzzling feature of these phase transitions is their apparent similarity

$$
\rho_{x x}
$$

Wei, Tsui, Paalanen, \& Pruisken
$\Delta B \sim T^{1 / \nu z}$ where $\nu z \sim 7 / 3$
ν is the correlation length exponent: $\xi \sim\left(B-B_{c}\right)^{-\nu}$
z is the dynamical critical exponent: $\tau \sim \xi^{z}$
at integer quantum Hall plateau transitions, the product can be factorized

$$
\nu \sim 7 / 3
$$

$z \sim 1$

$\Delta B \sim L^{-1 / \nu}$
$\Delta B \sim E^{1 / \nu(z+1)}$
scaling of the dc resistivity at these (apparently) continuous quantum phase transitions implies:

$$
\begin{aligned}
\rho_{x x} & =\frac{h}{e^{2}} f_{(a)}\left(\frac{B-B_{c}^{(a)}}{T^{1 / \nu z}}, \frac{B-B_{c}^{(a)}}{E^{1 / \nu(z+1)}}\right) \\
\rho_{x y} & =\frac{h}{e^{2}} g_{(a)}\left(\frac{B-B_{c}^{(a)}}{T^{1 / \nu z}}, \frac{B-B_{c}^{(a)}}{E^{1 / \nu(z+1)}}\right)
\end{aligned}
$$

(a) labels the particular phase transition, e.g., $1 \rightarrow 0$ or $1 / 3 \rightarrow 2 / 5$

In this talk, I will assume these measurements imply ν and z are the same at all phase transitions between quantum Hall states of spin-polarized electrons

Critical states are only distinguished by their critical resistivities,i.e., $f_{(a)}(0)$ and $g_{(a)}(0)$
superuniversality is the sharing of critical indices among distinct critical points
such behavior is surprising:
(i) "conventional" symmetry-breaking phase transitions are NOT superuniversal (below their critical dimensionality)
(ii) the basic theoretical framework for the integer and fractional quantum Hall effects are different: interactions are crucial to lifting the degeneracy of a partially filled Landau level

"composite bosons" (and "composite fermions")

from D. Arovas' Ph.D thesis
heuristic picture:
electrons at $1 / 3$ filling = "composite bosons" in zero effective field

B

electron

B "composite boson"

$$
B_{\text {eff }}=B-6 \pi n_{e}
$$

"composite bosons" (and "composite fermions")

from D. Arovas' Ph.D thesis
heuristic picture:
electrons at $1 / 3$ filling = "composite bosons" in zero effective field

B

electron

B "composite boson"

$$
B_{\text {eff }}=B-6 \pi n_{e}
$$

"composite bosons" (and "composite fermions")

from D. Arovas' Ph.D thesis
heuristic picture:
electrons at $1 / 3$ filling = "composite bosons" in zero effective field

B

electron

"composite boson"

$$
B_{\mathrm{eff}}=B-6 \pi n_{e}
$$

"composite bosons" provide a useful theoretical picture that unites the integer and fractional quantum Hall phenomena

$$
\begin{gathered}
\mathcal{L}_{c b}=\varphi^{*}\left(i\left(\partial_{t}-i\left(\alpha_{t}+A_{t}\right)+\frac{1}{2 m_{e}}\left(\partial_{j}-i\left(\alpha_{j}+A_{j}\right)\right)^{2}\right) \varphi-|\varphi|^{4}+\frac{1}{n} \frac{1}{4 \pi} \alpha d \alpha\right. \\
\alpha d \alpha=\epsilon^{\mu \nu \rho} \alpha_{\mu} \partial_{\nu} \alpha_{\rho} \\
\alpha: \text { "statistical" gauge field } \\
A: \text { electromagnetic gauge field } \\
n: \text { number of flux quanta "attached" to } \varphi
\end{gathered}
$$

$$
\begin{aligned}
& n=1 \text { gives IQHE } \\
& n=3 \text { gives } 1 / 3 \text { Laughlin state }
\end{aligned}
$$

quantum Hall transitions are mapped to field-tuned "superconductor" to "insulator" transition
"composite bosons" provide a useful theoretical picture that unites the integer and fractional quantum Hall phenomena

$$
\mathcal{L}_{c b}=\varphi^{*}\left(i\left(\partial_{t}-i\left(\alpha_{t}+A_{t}\right)+\frac{1}{2 m_{e}}\left(\partial_{j}-i\left(\alpha_{j}+A_{j}\right)\right)^{2}\right) \varphi-|\varphi|^{4}+\frac{1}{n} \frac{1}{4 \pi} \alpha d \alpha\right.
$$

superuniversality obtains if exponents don't depend on n
in mean-field theory, this occurs (obviously)
to go beyond mean-field theory, prior works have computed exponents when there are a large number of flavors, e.g.,

$$
\nu=1-\frac{1}{N_{f}} F(n)
$$

$F(n) \sim \mathcal{O}(1)$ and depends strongly on n

structure of the talk

I'll provide some theoretical optimism for superuniversality with new effective descriptions for a class of quantum Hall phase transitions between states whose quasiparticles have abelian statistics
these descriptions have an emergent $\mathrm{U}(\mathrm{N})$ with $\mathrm{N}>1$ gauge symmetry

1. I'll provide a description for an integer quantum Hall transition
2. I'll use this description to generate transitions between a class of abelian quantum Hall states
3. I'll show that the correlation length exponent at distinct quantum hall transitions is the same in the 't Hooft large N limit
4. I'll argue that these results hold away from the 't Hooft large N limit using non-abelian bosonization conjectures

Note: I will not get realistic critical exponents; additional physical ingredients are presumably necessary

the starting point

$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
N : an integer greater than 1
a: a $U(N)$ Chern-Simons gauge field
b : a $U(1)$ Chern-Simons gauge field
A : the electromagnetic gauge field
ψ : Dirac fermion with 2 spinor components in the fundamental rep of $U(N)$

quantization conditions

$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
in the absence of "matter fields," like a Dirac fermion, only integral linear combinations of the terms below give well defined contributions to a 2+1D effective action Deser, Jackiw, Templeton; Polychronakos

$$
\begin{aligned}
& \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right] \\
& \frac{1}{4 \pi} \operatorname{Tr}[a] d \operatorname{Tr}[a] \\
& \frac{1}{2 \pi} \operatorname{Tr}[a] d b \\
& \frac{1}{4 \pi} b d b
\end{aligned}
$$

the first two terms in $\mathcal{L}_{\text {IQHT }}$ contribute well defined terms in the 1PI action
ultraviolet regularization: Yang-Mills term for a
$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
this means we augment,

$$
\mathcal{L}_{\mathrm{IQHT}} \rightarrow \mathcal{L}_{\mathrm{IQHT}}-\frac{1}{4 g^{2}} \operatorname{Tr}\left[F_{a}^{2}\right]
$$

decomposing $U(N) \approx S U(N) \times U(1)$
the "classical" $S U(N)$ Chern-Simons level gets a one-loop exact shift:
$k_{S U(N)}=-\frac{1}{2} \mapsto-\frac{1}{2}-N$
Witten; Chen, Semenoff, \& Wu

$\mathcal{L}_{\text {IQHT }}$ realizes an integer quantum Hall phase transition

$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$
\mathcal{L}_{\text {eff }}=\frac{\operatorname{sign}\left(m_{\psi}\right)-1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

$\mathcal{L}_{\text {IQHT }}$ realizes an integer quantum Hall phase transition

$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$
\mathcal{L}_{\text {eff }}=\frac{\operatorname{sign}\left(m_{\psi}\right)-1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

$m_{\psi}<0$: integer quantum Hall effect $m_{\psi}>0$: insulator

$\mathcal{L}_{\text {IQHT }}$ realizes an integer quantum Hall phase transition

$$
\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$
\mathcal{L}_{\text {eff }}=\frac{\operatorname{sign}\left(m_{\psi}\right)-1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

$$
m_{\psi}<0:
$$

rank/level duality

$$
\underset{\text { Leff }}{\mathcal{L}_{\text {ef }}}=-\frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

Hsin \& Seiberg

$$
=-\frac{1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

$\mathcal{L}_{\text {IQHT }}$ realizes an integer quantum Hall phase transition

$\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A$
tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\frac{\operatorname{sign}\left(m_{\psi}\right)-1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A \\
& m_{\psi}>0: \\
& \mathcal{L}_{\text {eff }}=-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A \\
& \Longrightarrow \\
& b=0 \text { and } \\
& \mathcal{L}_{\text {eff }}=0
\end{aligned}
$$

fractional quantum Hall transitions via the modular group

modular group, $P S L(2, \mathbb{Z})$: group of 2×2 matrices with integer entries and unit determinant
complexified zero-temperature dc conductivity

$$
\begin{gathered}
\sigma=\sigma_{x y}+i \sigma_{x x} \\
\sigma \mapsto \frac{p \sigma+q}{r \sigma+s}, \text { for }\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \in \underset{\text { wikipedia }}{ }
\end{gathered}
$$

lifting the modular group to a Lagrangian $\mathcal{L}(\Phi, A)$

Witten; Leigh \& Petkou

$$
\begin{aligned}
& \text { generators: } \mathcal{T}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \mathcal{S}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \mathcal{T}: \mathcal{L}(\Phi, A) \mapsto \mathcal{L}(\Phi, A)+\frac{1}{4 \pi} A d A \\
& \mathcal{S}: \mathcal{L}(\Phi, A) \mapsto \mathcal{L}(\Phi, c)-\frac{1}{2 \pi} c d B
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}: \sigma \mapsto \sigma+1 \\
& \mathcal{S}: \sigma \mapsto-1 / \sigma
\end{aligned}
$$

we can decompose the subset of modular transformations into two groups:

(i) addition of a Landau level: \mathcal{T}

and

(ii) attachment of n units of flux: $\mathcal{S T}^{-n} \mathcal{S}$

$$
\begin{aligned}
& \text { e.g., } \\
& \sigma=1 \rightarrow 0 \text { transition }
\end{aligned}
$$

some modular

$$
\begin{aligned}
& \sigma=1 /(n+1) \rightarrow 0 \text { transition } \\
& \operatorname{via} \mathcal{S T}^{-2} \mathcal{S}
\end{aligned}
$$

from a theory for the $\sigma=1 \rightarrow 0$ transition we can generate a class of fractional quantum Hall transitions, e.g., $\sigma=1 /(n+1) \rightarrow 0$

$\mathcal{L}_{\text {IQHT }}(A)$

```
some modular transformation
\[
\mathcal{L}=\mathcal{L}_{\mathrm{IQHT}}(c)+\mathcal{L}_{\bmod }(A)
\]
```

$$
\begin{aligned}
\mathcal{L}_{\mathrm{IQHT}}(c) & =i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d c \\
\mathcal{L}_{\mathrm{mod}}(A) & =-\frac{1}{2 \pi} c d g-\frac{n}{4 \pi} g d g-\frac{1}{2 \pi} g d A
\end{aligned}
$$

focusing on the $\sigma=1 /(n+1) \rightarrow 0$ transition, we wish to calculate:
$\nu^{-1}=1-\gamma_{\bar{\psi} \psi}$.
$z=1$, automatically, since theory is relativistic

I will argue that $\gamma_{\bar{\psi} \psi}$ is independent of n in the 't Hooft large N limit

for this perturbative calculation, it's helpful to rewrite the Lagrangian in a less precise, but simpler form

$$
\mathcal{L}_{\mathrm{s}}=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]+\frac{1}{N+1+n} \frac{1}{4 \pi}(\operatorname{Tr}[a]-A) d(\operatorname{Tr}[a]-A)
$$

next, we decompose

$$
\begin{gathered}
a=\mathcal{A}_{S U(N)}+\mathcal{A}_{U(1)} \mathbb{I} \\
\mathcal{L}_{\mathrm{s}}=i \bar{\psi} \not D_{a} \psi+\frac{k_{S U(N)}}{4 \pi} \operatorname{Tr}\left[\mathcal{A}_{S U(N)} d \mathcal{A}_{S U(N)}-\frac{2}{3} i \mathcal{A}_{S U(N)}^{3}\right]+\frac{k_{U(1)}}{4 \pi} \mathcal{A}_{U(1)} d \mathcal{A}_{U(1)} \\
k_{S U(N)}=-\frac{1}{2}-N \text { and } k_{U(1)}=\frac{-N^{2}+N+N n}{2(N+1+n)}
\end{gathered}
$$

some intuition

$$
\begin{gathered}
\mathcal{L}_{\mathrm{s}}=i \bar{\psi} \not{ }_{a} \psi+\frac{k_{S U(N)}}{4 \pi} \operatorname{Tr}\left[\mathcal{A}_{S U(N)} d \mathcal{A}_{S U(N)}-\frac{2}{3} i \mathcal{A}_{S U(N)}^{3}\right]+\frac{k_{U(1)}}{4 \pi} \mathcal{A}_{U(1)} d \mathcal{A}_{U(1)} \\
a=\mathcal{A}_{S U(N)}+\mathcal{A}_{U(1)} \mathbb{I} \\
k_{S U(N)}=-\frac{1}{2}-N \text { and } k_{U(1)}=\frac{-N^{2}+N+N n}{2(N+1+n)}
\end{gathered}
$$

since $\left|k_{U(1)}\right| \propto N$ as $N \rightarrow \infty$
fluctuations of $\mathcal{A}_{U(1)}$ can be made arbitrarily weak,
if $\mathcal{A}_{S U(N)}$ could be ignored
't Hooft large N limit

$$
\begin{aligned}
& N \rightarrow \infty \\
& \text { with } \\
& \frac{N}{k_{S U(N)}} \text { and } \frac{N}{k_{U(1)}} \text { finite }
\end{aligned}
$$

in this limit, leading non-zero contributions to anomalous dimension are

(1-loop vertex and 1- and 2-loop fermion self-energies are finite)

$$
\begin{aligned}
& \delta u(N): \sim \Omega \Omega={ }_{m^{\prime}}^{m} \vec{F}^{n} n^{\prime} \propto \frac{1}{k_{\text {Su(N) }}} \\
& u(1): \operatorname{vrv}=\cdots \cdots \propto \frac{1}{k_{u(1)}}
\end{aligned}
$$

example: fermion self-energy

$$
\begin{aligned}
& \alpha \frac{N}{k_{S u(N)}}+\frac{1}{k_{u(1)}}
\end{aligned}
$$

't Hooft large N limit

as long as $\left|k_{U(1)}\right| \sim N$
leading 't Hooft large N limits of $U(N)$ and $S U(N)$ are the same perturbatively

$$
\gamma_{\bar{\psi} \psi}=c_{1}\left(\frac{N}{k_{S U(N)}}\right)^{2}+\mathcal{O}(1 / N) f(n)
$$

in perturbation theory, $\mathcal{A}_{U(1)}$ only first contributes at $\mathcal{O}(1 / N)$
i.e., dependence on n in $1 /(n+1) \rightarrow 0$ transition occurs at $\mathcal{O}(1 / N)$
this is superuniversality in the 't Hooft large N limit!
we can quote prior work for the value of the 2-loop planar contribution to the mass anomalous dimension

$$
\gamma_{\bar{\psi} \psi}=0+\mathcal{O}\left(\left(\frac{N}{k_{S U(N)}}\right)^{3}\right)
$$

Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin

$$
\mathrm{Or}
$$

$$
\nu=1
$$

in perturbation theory, this result holds for all n
higher-order terms in perturbation theory may change the value for the anomalous dimension (or exponent), but will not invalidate the \mathbf{n} independence
to what extent do these results hold away from the 't Hooft large N limit?

I will argue via consistency of various dualities that

$$
\mathcal{L}_{\mathrm{IQHT}}(A)=i \bar{\psi} \not D_{a} \psi-\frac{1}{2} \frac{1}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d b-\frac{N+1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

is in the same universality class as the theory of a free Dirac fermion:
this means at $\mathrm{n}=0$

$$
i \bar{\Psi} \not D_{A} \Psi+\frac{1}{8 \pi} A d A
$$

FOR N=1:Son; Senthil \& Wang; Metlitski \& Vishwanath; Seiberg, Senthil, Wang, \& Witten; Karch \& Tong; Kachru, MM, Torroba, \& Wang; Geraedts, Zaletel, Mong, Metlitski, Vishwanath, \& Motrunich; Shankar \& Murthy; Mross, Alicea, \& Motrunich; Balram \& Jain

$$
\gamma_{\bar{\psi} \psi}=0
$$

furthermore, it implies an independence with respect to N and that within a formal perturbative expansion, the anomalous dimension, as captured by the planar term, vanishes when $\mathrm{n}>0$ away from the 't Hooft large N limit!
the argument is immediate and relies on consistency of various dualities
Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin;
$\left|D_{A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} A d A$ Aharony, Gur-Ari, \& Yacoby; Aharony; Hsin \& Seiberg; Seiberg, Senthil, Wang, \& Witten
\pm
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d A-\frac{N-1}{4 \pi} A d A$
the argument is immediate and relies on consistency of various dualities
Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin;
$\left|D_{A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} A d A$ Aharony, Gur-Ari, \& Yacoby; Aharony; Hsin \& Seiberg; Seiberg, Senthil, Wang, \& Witten
\downarrow
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d A-\frac{N-1}{4 \pi} A d A$
applying $\mathcal{S T}^{-2}$ to both sides:

$$
\left|D_{b} \phi\right|^{2}-|\phi|^{4}-\frac{1}{4 \pi} b d b-\frac{1}{2 \pi} b d A
$$

$$
\imath
$$

$$
i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d c-\frac{N+1}{4 \pi} c d c
$$

$$
-\frac{1}{2 \pi} c d A
$$

the argument is immediate and relies on consistency of various dualities
Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin;
$\left|D_{A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} A d A$ Aharony, Gur-Ari, \& Yacoby; Aharony; Hsin \& Seiberg; Seiberg, Senthil, Wang, \& Witten
\downarrow
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d A-\frac{N-1}{4 \pi} A d A$
applying $\mathcal{S T}^{-2}$ to both sides:

$$
\left|D_{b} \phi\right|^{2}-|\phi|^{4}-\frac{1}{4 \pi} b d b-\frac{1}{2 \pi} b d A \longleftarrow \begin{aligned}
& \text { from Huaiia's talk, we know } \\
& \text { this is dual to a free fermion }
\end{aligned}
$$

$$
\uparrow
$$

$$
i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d c-\frac{N+1}{4 \pi} c d c
$$

$$
-\frac{1}{2 \pi} c d A
$$

the argument is immediate and relies on consistency of various dualities
Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin;
$\left|D_{A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} A d A$ Aharony, Gur-Ari, \& Yacoby; Aharony; Hsin \& Seiberg; Seiberg, Senthil, Wang, \& Witten
\downarrow
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d A-\frac{N-1}{4 \pi} A d A$
applying $\mathcal{S T}^{-2}$ to both sides:

$$
\begin{aligned}
& \mathfrak{\imath} \\
& i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d c-\frac{N+1}{4 \pi} c d c \\
& -\frac{1}{2 \pi} c d A
\end{aligned}
$$

the argument is immediate and relies on consistency of various dualities
Giombi, Minwalla, Prakash, Trivedi, Wadia, \& Yin;
$\left|D_{A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} A d A$ Aharony, Gur-Ari, \& Yacoby; Aharony; Hsin \& Seiberg; Seiberg, Senthil, Wang, \& Witten
\downarrow
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d A-\frac{N-1}{4 \pi} A d A$
applying $\mathcal{S T}^{-2}$ to both sides:

$$
i \bar{\Psi} \not D_{A} \Psi+\frac{1}{8 \pi} A d A
$$

\uparrow
$i \bar{\psi} D_{a} \psi-\frac{1}{8 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{2 \pi} \operatorname{Tr}[a] d c-\frac{N+1}{4 \pi} c d c$
$-\frac{1}{2 \pi} c d A$
things to do:
we'd like to know about non-perturbative corrections we'd like to calculate electrical and thermal conductivity we'd like to add disorder and the Coulomb interaction

